

Online Learning and Management of Future Power Grids

Georgios B. Giannakis

Acknowledgements: NSF 1423316, 1442686, 1509040; V. Kekatos (VT), S.-J. Kim (UMBC), A.-J. Conejo (OSU), G. Wang (UMN)

Smart Grid: Advanced infrastructure leveraging information technologies to enhance the current electrical power networks

resilient

efficient

participation

sustainable

self-restoring

green

situational awareness

Enabling technology advances

distributed generation

micro-grids

renewables

power electronics MSRMSC FC TCR TSC

electric vehicles

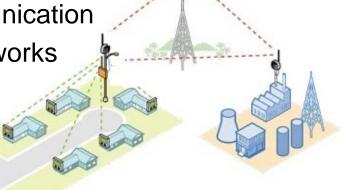
Learning, optimization, and signal processing

toolbox

sensing/metering

demand response

communication networks



Roadmap

- Online power system state estimation (PSSE)
 - Semi-definite relaxation (SDR) for nonlinear PSSE
 - Online convex optimization (OCO) via mirror descent algorithm
- Real-time pricing for demand response (DR)
 - Full/partial (bandit) feedback
- Stochastic energy management
 - Stochastic reactive power control
 - Joint active and reactive power control
 - Leveraging voltage regulation and inverter flexibilities

Online PSSE

- Static PSSE
 - For steady-state; no dynamics; hence, adequate for conventional grids
- Dynamic PSSE
 - Incorporates measurement history/predicts states using dynamical models
 - > Dynamical models may be hard to obtain under high penetration of renewables

Challenges

- Non-convexity due to nonlinear measurements (local optimality)
- Model uncertainty and non-stationarity

Technical approaches

- Semidefinite programming relaxation [Zhu-Giannakis'11, Lavaei-Low'11]
- Online convex optimization [Kim-Wang-Giannakis'14]

SDR for batch PSSE

ullet Static PSSE task (quadratic $h_m(\mathbf{v})$ in general)

$$\min_{\mathbf{v}} \sum_{m=1}^{M} w_m [z_m - h_m(\mathbf{v})]^2$$

- Nonconvex and generally NP-hard to solve
- SDP-based approach
 - $\mathbf{x} := [\Re(\mathbf{v})^{\mathcal{T}} \Im(\mathbf{v})^{\mathcal{T}}]^{\mathcal{T}}$, and $\mathbf{X} := \mathbf{x}\mathbf{x}^{\mathcal{T}}$, then $h_m(\mathbf{v}) = \operatorname{tr}(\mathbf{H}_m\mathbf{X})$
 - Equivalent formulation

$$\min_{\mathbf{X}} \sum_{m=1}^{M} \omega_m \left[z_m - \text{Tr}(\mathbf{H}_m \mathbf{X}) \right]^2$$
s.t. $\mathbf{X} \succeq \mathbf{0}$

$$\operatorname{rank}(\mathbf{X}) = 1$$

Online convex optimization

- OCO framework: game between a player and an adversary
 - At each time slot $t = 0, 1, \dots, T$
 - ightharpoonup Utility (player) chooses \mathbf{X}^t
 - $m{ iny}$ Grid (adversary) chooses $c^t(\mathbf{X}) := \sum_{m=1}^M w_m [z_m^t \mathrm{tr}(\mathbf{H}_m \mathbf{X})]^2$
 - ightharpoonup Player suffers loss $c^t(\mathbf{X}^t)$
- OCO goal: achieve sublinear regret

$$R_c(T) := \sum_{t=1}^T c^t(\mathbf{X}^t) - \min_{\mathbf{X} \in \mathcal{X}} \sum_{t=1}^T c^t(\mathbf{X}) \text{ with } R_c(T)/T \to 0 \text{ as } T \to \infty$$

Online PSSE using OCO

- Dynamic PSSE as a game between the utility and the grid buses
- lacksquare Goal: choose $\mathbf{X}^t \succeq \mathbf{0}$ at each time t to minimize $\sum_{t=1}^T c^t(\mathbf{X}^t)$

$$c^{t}(\mathbf{X}) := \sum_{m=1}^{M} w_{m} [z_{m}^{t} - \operatorname{tr}(\mathbf{H}_{m}\mathbf{X})]^{2}$$

Online mirror descent achieves sublinear regret [Shalev-Shwartz'12]

$$\mathbf{X}^{t+1} = \arg\min_{\mathbf{X}\succeq 0} \langle \nabla c^t(\mathbf{X}^t), \mathbf{X} \rangle + \frac{1}{\eta^t} D(\mathbf{X}, \mathbf{X}^t) \quad \begin{array}{cc} \eta^t \text{:} & \text{stepsize} \\ D(\cdot, \cdot) \text{:} & \text{Bregman div.} \end{array}$$

lacksquare Choosing $D(\mathbf{X},\mathbf{Y}):=rac{1}{2}\|\mathbf{X}-\mathbf{Y}\|_F^2$ yields

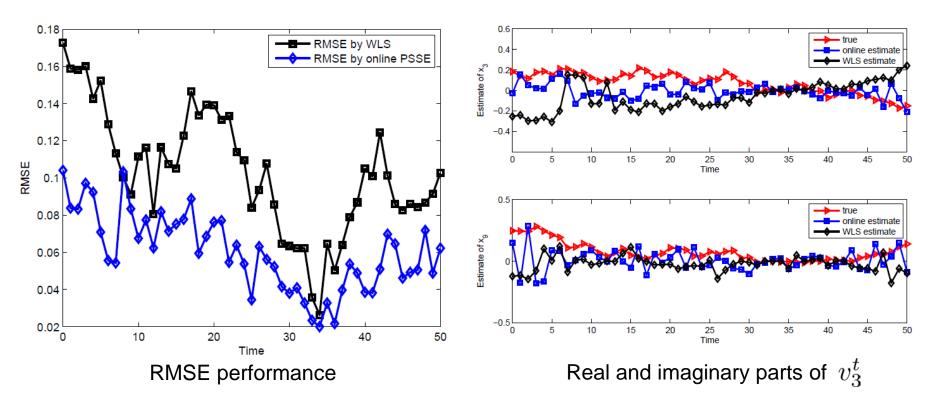
$$\mathbf{X}^{t+1} = \arg\max_{\mathbf{X}\succeq 0} \left\{ \sum_{m=1}^{M} 2w_m [z_m^t - \operatorname{tr}(\mathbf{H}_m \mathbf{X}^t)] \operatorname{tr}(\mathbf{H}_m \mathbf{X}) + \frac{1}{2\eta^t} ||\mathbf{X} - \mathbf{X}^t||_F^2 \right\}$$

Completing the squares offers closed-form updates

PSSE tests with IEEE 6-bus system

Random walk dynamical model:

$$\mathbf{v}^{t+1} = \rho \mathbf{v}^t + \boldsymbol{\eta}^t, \ \rho = 0.99$$

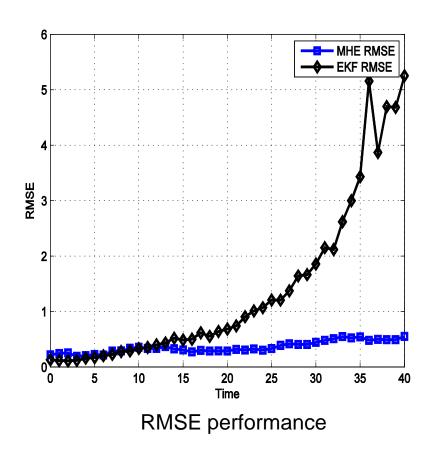


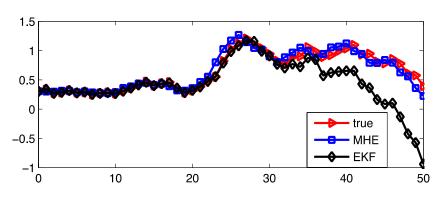
Albeit "blind" to dynamics, OCO outperforms WLS for online PSSE

Moving-horizon PSSE

Leveraging state-space model

$$\boldsymbol{v}^{t+1} = \rho \boldsymbol{v}^t + \boldsymbol{w}^t, \ y_i^t = h_i(\boldsymbol{v}^t) + \eta_i^t$$





ary part of x_6

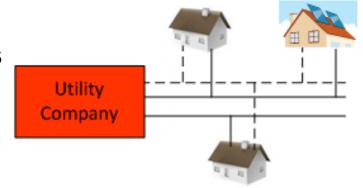
Real and imaginary parts of v_6^t

MH-based dynamic PSSE outperforms EKF tracker

Real-time pricing for DR

Adapt load schedules based on load prices

Issues: Privacy, robustness, real-time, consumer participation



Goal: smart real-time pricing by learning consumer preferences

- Adjust energy price in real-time to shape load
- Set prices differently for individual customers
- Load-price elasticity changes across consumers and time

Challenge: Learn elasticity with minimal "modeling"

Problem formulation

Model

- p_k^t : price adjustment for customer k at time slot t
- $\triangleright l^t$: load level at slot *t without* price adjustment
- $\triangleright \theta_k^t$: elasticity of consumer k at slot t
- $ightharpoonup d_k^t$: load adjustment of customer k due to price adjustment p_k

$$d_k^t = -\theta_k^t p_k^t$$

$$d_k^t = -\theta_k^t p_k^t$$
 $\boldsymbol{\theta}^t := [\theta_1^t, \dots, \theta_K^t]^\mathsf{T}$

Aggregate adjusted load

$$l_a^t := l^t + \sum d_k^t = l^t - {\boldsymbol{\theta}^t}^\mathsf{T} \mathbf{p}^t$$

Goal: minimize load variance

$$\frac{1}{2} \sum_{t=1}^{T} \left(l^t - \boldsymbol{\theta}^{t\mathsf{T}} \mathbf{p}^t - m^t \right)^2$$

Promote sparsity and fairness

$$c^{t}(\mathbf{p}^{t}) := \underbrace{\frac{1}{2} \left(l^{t} - \boldsymbol{\theta}^{t} \mathbf{p}^{t} - m^{t} \right)^{2}}_{:= \phi^{t}(\mathbf{p}^{t})} + \underbrace{\lambda ||\mathbf{p}^{t}||_{1} + \frac{\mu}{2} ||\mathbf{p}^{t}||_{2}^{2}}_{:= r(\mathbf{p}^{t})}$$

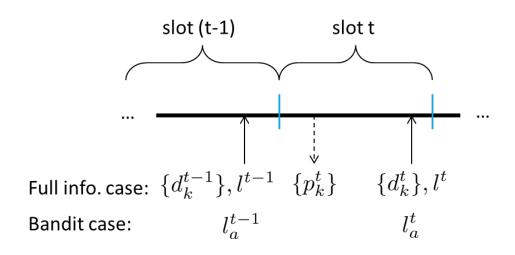
Two types of feedback

Full feedback

- $F^t = c^t(\cdot)$
- ullet Utility obtains l^t and $\{d_k^t\}_{k=1}^K$ at the end of slot t ($\hat{ heta}_k^t=-d_k^t/(p_k^t+arepsilon)$)

Partial (bandit) feedback

- $F^t = c^t(p^t)$
- > Utility observes only l_a^t at the end of slot t



Algorithms

- Full feedback case
 - Composite objective mirror descent (COMID)

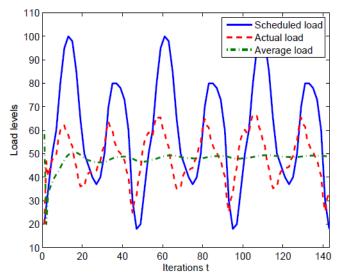
$$\mathbf{p}^{t+1} = \arg\min_{\mathbf{p} \in \mathcal{P}} \left[-\eta (l^t - \boldsymbol{\theta^t}^\mathsf{T} \mathbf{p}^t - m^t) \boldsymbol{\theta^t}^\mathsf{T} \mathbf{p} + \frac{1}{2} ||\mathbf{p} - \mathbf{p}^t||_2^2 + \eta \left(\lambda ||\mathbf{p}||_1 + \frac{\mu}{2} ||\mathbf{p}||_2^2 \right) \right]$$

$$\nabla \phi^t(\mathbf{p}^t)$$

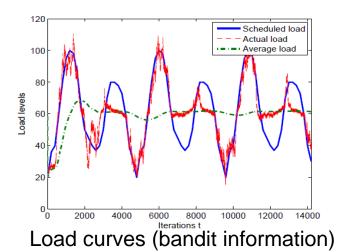
$$\eta : \text{step size}$$

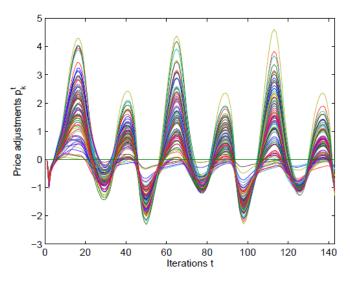
- > Provably achieves $O(\sqrt{T})$ regret bound
- Partial feedback case
 - > Need random sampling to estimate gradient of $c^t(\cdot)$
 - > Our algorithm enjoys $O(T^{3/4})$ regret bound [Kim-Giannakis'14]
 - No need to know individual time-varying demands!

RTP tests



Load before and after real-time DR

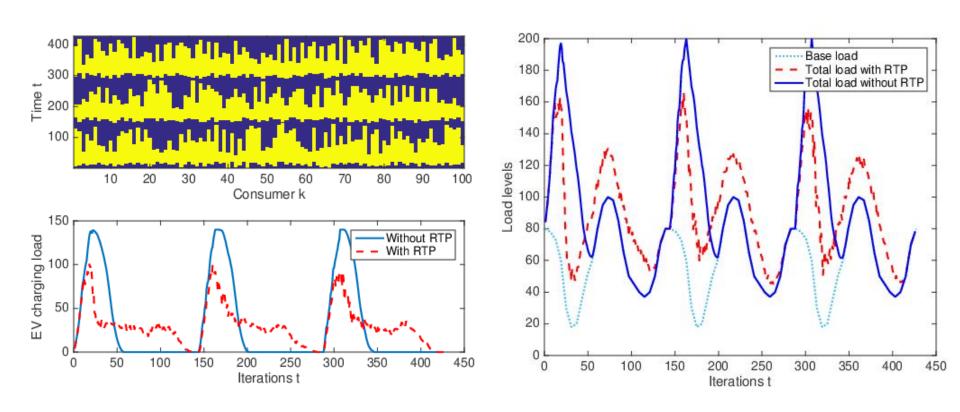




Price adjustment (full information)

RTP with EV charging added

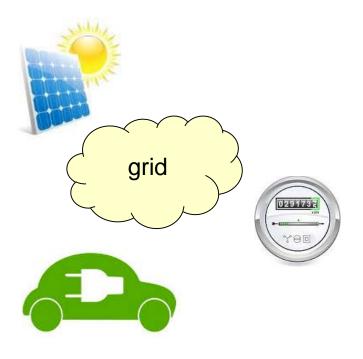
Charging K=100 EVs; uniformly over 6-10pm; for 3 days



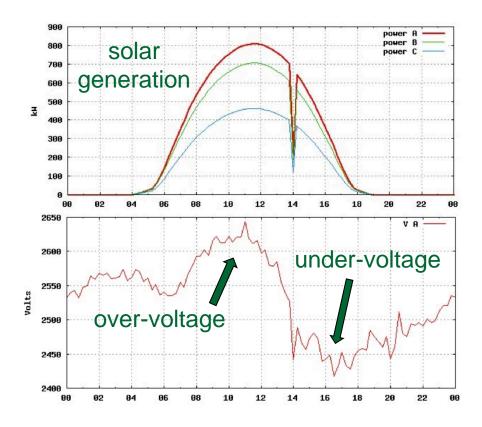
RTP smooths the overall (base plus EV) load curve

Motivation for stochastic control

Distribution grids undergo transformative changes



Active power fluctuations affect voltage magnitudes [25kV]

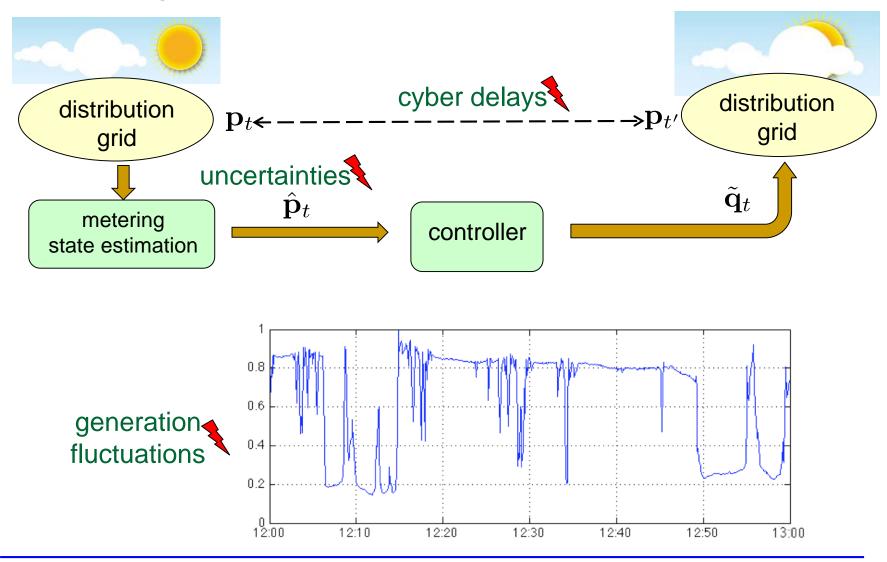


Reactive power management

Problem statement: Given active injections, control reactive injections to minimize losses while preserving voltage magnitudes within desired range

- Typically performed by utility-owned transformers and capacitors
 - discrete variables, slow response, limited lifetime [Baldick-Wu'90]
- Reactive control enabled by PV inverters [Overybye'10], [Chertkov'11]
 - decentralized [Baran-Markabi'07], [Robbins-Garcia'13], [Bologniani'13]
 - localized [Zhang-Garcia-Tse'13]; successive approximation [Deshmukh'12]
 - CONVEX relaxations [Lam-Zhang-Tse'12], [Dallanese-Dhople-Giannakis'14]
- Presumption: active power injections are known and constant

Grid operation



Online data-based scheme

Deterministic loss minimization

$$\tilde{\mathbf{q}}_t := \arg\min_{\mathbf{q} \in \mathcal{Q}} f_t(\mathbf{q}) = f(\mathbf{p}_t, \mathbf{q})$$

Stochastic power loss minimization

$$\hat{\mathbf{q}} := \arg\min_{\mathbf{q} \in \mathcal{Q}} \ \mathbb{E}_{\mathbf{p}_t}[f_t(\mathbf{q})]$$

Stochastic approximation method (distribution-free)

$$\hat{\mathbf{q}}_{t+1} := \operatorname{arg\,min}_{\mathbf{q} \in \mathcal{Q}} f_t(\mathbf{q}_t) + \mathbf{g}_t^T(\mathbf{q} - \mathbf{q}_t) + \frac{1}{2\eta_t} \|\mathbf{q} - \mathbf{q}_t\|_2^2$$

Challenges: finding $\mathbf{g}_t \in \partial f_t(\mathbf{q})$ and the minimizer $\hat{\mathbf{q}}_{t+1}$

Subdifferential $\partial f_t(\hat{\mathbf{q}}_{t-1})$ coincides with Lagrange multiplier λ_t

$$f(\mathbf{p}, \mathbf{q}) = \min_{\substack{\mathbf{p}, \mathbf{Q} \\ \ell, \mathbf{v}}} \sum_{n=1}^{L} r_n \ell_n \text{ s.t. } p_n = \sum_{k \in \mathcal{C}_n} P_k - (p_n - r_n \ell_n), (q_n = \sum_{k \in \mathcal{C}_n} Q_k - (Q_n - x_n \ell_n)), v_n = v_{\pi_n} + (r_n^2 + x_n^2)\ell_n - 2(r_n P_n + x_n Q_n), \ \ell_n \ge P_n^2 + Q_n^2, \ \mathbf{v} \in \mathcal{V}$$

V. Kekatos, G. Wang, A. J. Conejo, and G. B. Giannakis, "Stochastic reactive power management in microgrids with renewables," *IEEE Trans. on Power Systems,* pp. 3386-3395, Nov. 2015.

Convergence

If
$$\|\hat{\mathbf{q}} - \mathbf{q}_t\|_2^2 \le 2D^2$$
, $\|\boldsymbol{\lambda}\|_2 \le L$, $\forall t$ and $\bar{\mathbf{q}}_T := \frac{1}{T} \sum_{t=1}^T \hat{\mathbf{q}}_t$, it holds that

(a)
$$\mathbb{E}[F(\overline{\mathbf{q}}_T)] - F(\hat{\mathbf{q}}) \le \frac{\alpha DL}{\sqrt{T}}$$

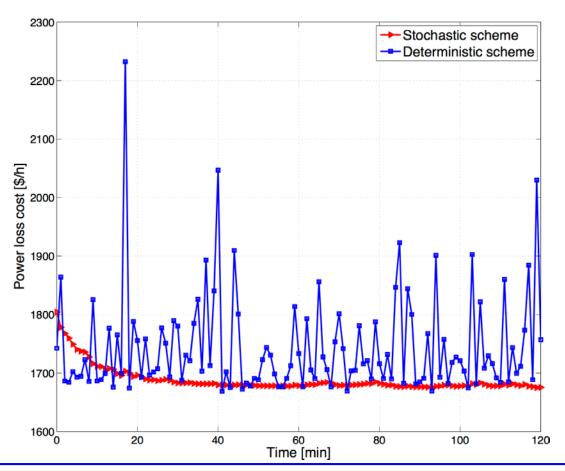
(b)
$$F(\overline{\mathbf{q}}_T) - F(\hat{\mathbf{q}}) \le \frac{DL}{\sqrt{T}} \left(\alpha + 4\sqrt{\log \delta} \right)$$
 with probability $1 - \delta^{-1}$

where
$$\alpha=2$$
 for $\eta_t=\frac{D}{L\sqrt{t}}$ or $\alpha=1.5$ for $\eta_t=\frac{D}{L\sqrt{T}}$.

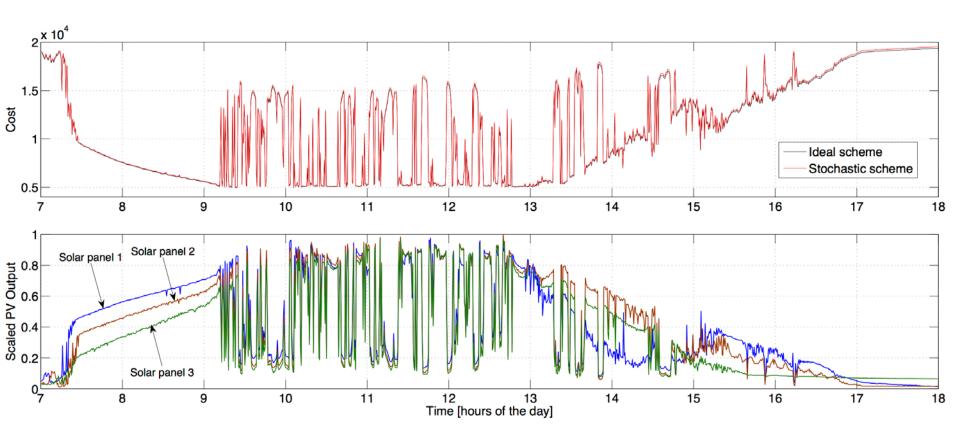
- Sublinear convergence in expectation and in probability
- $lue{}$ Constant or diminishing step size η_t
- $lue{}$ Compact ${\mathcal Q}$ implies finite (D,L)

Simulated active power uncertainty

- South. Cal. Edison grid: 47 buses and 10 solar generators
- Active power + AWGN; and 30sec control period with 30sec cyber delays



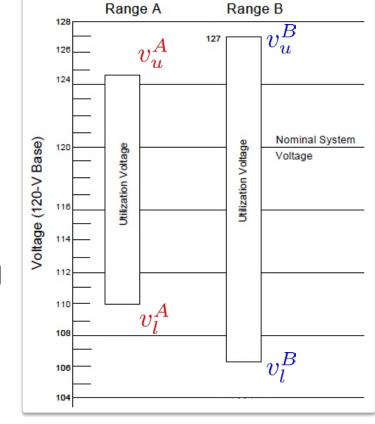
Reactive power control with real data



- Stochastic scheme tracks the ideal (unrealistic) scheme
- Lower cost at periods of local solar generation

Leveraging stochastic constraints

- Flexibility in voltage regulation standards
 - voltage magnitudes in prescribed region for 95% of 10-min samples [EN50160 Std.]
 - two utilization ranges defined by ANSI C84.1



- Flexibility in smart inverters
 - inverters designed to work at 1.2-1.5 times higher nameplate ratings
 - transient overloading possible [Moursi-Xiao-Kirtley'13, ABB'10]

Stochastic energy management

Problem statement: Given consumption and renewable generation predictions, jointly optimize active and reactive injections to minimize losses while balancing the voltage profiles

- Why active power curtailment?
 - voltage magnitudes sensitive to active injections in distribution grids
 - worldwide feed-in tariff opportunities (successful in Europe and US)
 - wind curtailment level: 2%-40% [NREL'14]
- Presumption: perfect predictions, deterministic interpretation of standards

Deterministic energy management

$$J_{1,t}^* := \min_{\mathbf{p}_t^g, \mathbf{q}_t^g} f_t(\mathbf{p}_t^g, \mathbf{q}_t^g)$$
s.to $0 \le p_{n,t}^g \le \bar{p}_{n,t}^g$, $\forall n$

$$(p_{n,t}^g)^2 + (q_{n,t}^g)^2 \le s_n^2, \ \forall n$$

$$\mathbf{v}_l^A \le v_{n,t}(\mathbf{p}_t^g, \mathbf{q}_t^g) \le \mathbf{v}_u^A, \ \forall n$$

$$\mathsf{voltage regulation limits}$$

- Presumed operating conditions
 - ightharpoonup predictions $(\mathbf{p}_t^c, \mathbf{q}_t^c, \bar{\mathbf{p}}_t^g)$ are precisely known
 - constraints are satisfied at all times t

Ergodic energy management

$$J_{2,t}^* := \min_{\{\mathbf{p}_t^g, \mathbf{q}_t^g\}_t} \mathbb{E}[f_t(\mathbf{p}_t^g, \mathbf{q}_t^g)]$$
s.to $0 \le p_{n,t}^g \le \bar{p}_{n,t}^g$, $\forall n$

$$(p_{n,t}^g)^2 + (q_{n,t}^g)^2 \le \bar{s}_n^2, \ \forall n$$

$$v_l^B \le v_{n,t}(\mathbf{p}_t^g, \mathbf{q}_t^g) \le v_u^B, \ \forall n$$

$$\mathbb{E}[(p_{n,t}^g)^2 + (q_{n,t}^g)^2] \le s_n^2, \ \forall n$$

$$v_l^A \le \mathbb{E}[v_{n,t}(\mathbf{p}_t^g, \mathbf{q}_t^g)] \le v_u^A, \ \forall n$$

- □ Relaxation of deterministic scheme, i.e., $J_{2,t}^* \leq \mathbb{E}[J_{1,t}^*]$
 - lacksquare expectations over joint distribution of $(\mathbf{p}_t^c, \mathbf{q}_t^c, ar{\mathbf{p}}_t^g)$ across all t
 - average inverter usage/voltage magnitudes in tighter range
 - instantaneous values in wider range (hard limits imposed)

Stochastic approximation solver

 $oldsymbol{\square}$ Let $\mathbf{x}:=(\{\mathbf{p}_t^g,\mathbf{q}_t^g\}_t)$ and dual variables $oldsymbol{
u},oldsymbol{\xi},\overline{oldsymbol{\xi}}\in\mathbb{R}_+^N$

$$\mathcal{L}\left(\mathbf{x}; \boldsymbol{\nu}, \underline{\boldsymbol{\xi}}, \overline{\boldsymbol{\xi}}\right) := \mathbb{E}\left\{f_t(\mathbf{p}_t^g, \mathbf{q}_t^g) + \sum_{n=1}^N \nu_n \left[(p_{n,t}^g)^2 + (q_{n,t}^g)^2\right] + \sum_{n=1}^N (\overline{\boldsymbol{\xi}}_n - \underline{\boldsymbol{\xi}}_n) v_{n,t}(\mathbf{p}_t^g, \mathbf{q}_t^g)\right\} - \sum_{n=1}^N \left(\nu_n s_n^2 - \underline{\boldsymbol{\xi}}_n v_l^A + \overline{\boldsymbol{\xi}}_n v_u^A\right)$$

Dual problem

$$g(\mathbf{v}^*, \underline{\boldsymbol{\xi}}^*, \overline{\boldsymbol{\xi}}^*) := \max_{\mathbf{v}, \underline{\boldsymbol{\xi}}, \overline{\boldsymbol{\xi}} \ge \mathbf{0}} \mathbb{E}\left[g_t(\mathbf{v}, \underline{\boldsymbol{\xi}}, \overline{\boldsymbol{\xi}})\right] - \sum_{n=1}^{N} \left(\nu_n s_n^2 - \underline{\xi}_n v_l^A + \overline{\xi}_n v_u^A\right)$$

Stochastic approximation under ergodicity conditions

Primal update: $(\hat{\mathbf{p}}_t^g, \hat{\mathbf{q}}_t^g)$ minimizers of $g_t(\boldsymbol{\nu}_{t-1}, \underline{\boldsymbol{\xi}}_{t-1}, \overline{\boldsymbol{\xi}}_{t-1})$

Dual update: $(\nu_t, \underline{\xi}_t, \overline{\xi}_t)$ using projected subgradient with $\mu > 0$

Convergence

If
$$H:=\sum_{n=1}^{N}\left[s_{n}^{2}+2(v_{u}^{B}-v_{l}^{B})^{2}\right]$$
, it holds w.p. 1 that
$$\lim_{t\to\infty}\frac{1}{t}\sum_{\tau=1}^{t}[(\hat{p}_{n,\tau}^{g})^{2}+(\hat{q}_{n,\tau}^{g})^{2}]\leq s_{n}^{2}$$

$$v_{l}^{A}\leq\lim_{t\to\infty}\frac{1}{t}\sum_{\tau=1}^{t}v_{n,\tau}(\hat{\mathbf{p}}_{\tau}^{g},\hat{\mathbf{q}}_{\tau}^{g})\leq v_{u}^{A}.$$

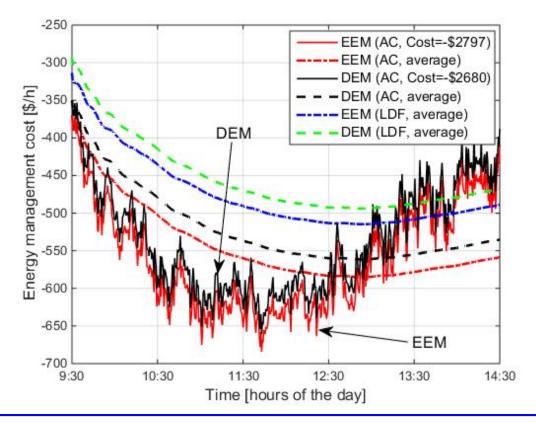
Further, the incurred operational costs satisfy

$$\lim_{t \to \infty} \frac{1}{t} \sum_{\tau=1}^{t} f_t(\mathbf{p}_t^g, \mathbf{q}_t^g) - J_2^* \le \frac{\mu H^2}{2}.$$

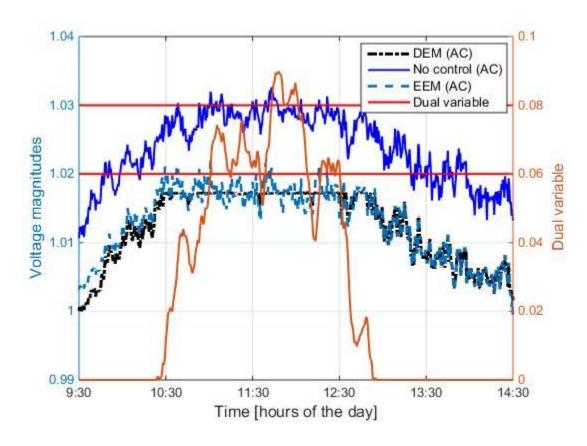
- ullet Feasibility ensured almost surely; at most $\mu H^2/2$ away from optimal J_2^*
- True even if processes are correlated across time

Testing joint ergodic management

- AC branch flow model (SOCP relaxation); and LinDistFlow (LDF) approx. model
- SouthCalEd grid: 56 buses and 2 PVs; 30sec real-world load data
- Flexibilities $[v_l^A,v_u^A]=[0.98^2,1.02^2],\,[v_l^B,v_u^B]=[0.97^2,1.03^2],\,ar{s}=1.3s$



Real-time voltage evolution



- Over-voltage effects have short duration
- Dual variable responds to over-voltages quickly

Take-home messages

- Online PSSE
 - Nonconvexity tackled by semidefinite relaxation
 - Online convex optimization learns (un)known dynamics on the fly
- Real-time pricing for demand response
 - Online learning of consumer time-varying demands with sublinear regret
- Stochastic energy management
 - Online power control to accommodate uncertainties and leverage flexibilities
- Research outlook
 - OCO/stochastic approximation for other power system optimization tasks?
 - Big data grid analytics (anomalies, classification and clustering)

Thank you!